1. Newton's law of universal gravitation states that the gravitational force of attraction between any two particles of masses m_1 and m_2 separated by a distance *r* has the magnitude

$$F = G \frac{m_1 m_2}{r^2}$$

where G is the universal gravitational constant, which has the value 6.672×10^{-11} N m² kg⁻².

2. If we have to find the resultant gravitational force acting on the particle m due to a number of masses M_1, M_2, \dots, M_n etc. we use the principle of superposition. Let F_1, F_2, \dots, F_n be the individual forces due to M_1, M_2, \dots, M_n each given by the law of gravitation. From the principle of superposition each force acts independently and uninfluenced by the other bodies. The resultant force F_R is then found by vector addition

$$F_R = F_1 + F_2 + \dots + F_n = \sum_{i=1}^n F_i$$

where the symbol ' Σ ' stands for summation.

- 3. Kepler's laws of planetary motion state that
 - (a) All planets move in elliptical orbits with the Sun at one of the focal points
 - (b) The radius vector drawn from the Sun to a planet sweeps out equal areas in equal time intervals. This follows from the fact that the force of gravitation on the planet is central and hence angular momentum is conserved.
 - (c) The square of the orbital period of a planet is proportional to the cube of the semimajor axis of the elliptical orbit of the planet

The period T and radius R of the circular orbit of a planet about the Sun are related by

$$T^2 = \left(\frac{4\pi^2}{G M_s}\right) R^3$$

where M_s is the mass of the Sun. Most planets have nearly circular orbits about the Sun. For elliptical orbits, the above equation is valid if *R* is replaced by the semi-major axis, *a*.

4. The acceleration due to gravity.

at a height h above the earth's surface

$$g(h) = \frac{G M_E}{(R_E + h)^2}$$

$$\approx \frac{G M_E}{R_E^2} \left(1 - \frac{2h}{R_E}\right) \text{ for } h << R_E$$

$$g(h) = g(0) \left(1 - \frac{2h}{R_E}\right) \text{ where } g(0) = \frac{G M_E}{R_E^2}$$